Novel Solitary Pulses for a Variable-Coefficient Derivative Nonlinear Schrödinger Equation
نویسندگان
چکیده
منابع مشابه
Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
We consider a derivative nonlinear Schrödinger equation with a general nonlinearity. This equation has a two parameter family of solitary wave solutions. We prove orbital stability/instability results that depend on the strength of the nonlinearity and, in some instances, their velocity. We illustrate these results with numerical simulations.
متن کاملEvolution of solitary waves for a perturbed nonlinear Schrödinger equation
Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and ...
متن کاملSolitary wave solution for a non-integrable, variable coefficient nonlinear Schrödinger equation
Abstract A non-integrable, variable coefficient nonlinear Schrödinger equation which governs the nonlinear pulse propagation in an inhomogeneous medium is considered. The same equation is also applicable to optical pulse propagation in averaged, dispersion-managed optical fiber systems, or fiber systems with phase modulation and pulse compression. Multi-scale asymptotic techniques are employed ...
متن کاملDirect perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation.
A direct perturbation theory for solitons of the derivative nonlinear Schrödinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those fo...
متن کاملExact Multisoliton Solutions of General Nonlinear Schrödinger Equation with Derivative
Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Physical Society of Japan
سال: 2007
ISSN: 0031-9015,1347-4073
DOI: 10.1143/jpsj.76.074004